

VHA6001－Series VCXO CMOS Oscillator

Jan 2015
Lend Free
－Pletronics＇VHA6 Series is a voltage controlled crystal oscillator with a CMOS output．
－This model uses fundamental mode crystals with no multiplication circuits．
－Tape and Reel packaging is available．
－ $5 \times 7 \mathrm{~mm}$ Ceramic Non－Magnetic LCC Package
－Design can be used in a high magnetic field
－Voltage Control Function on pad 1
－Enable／Disable Function on pad 2

Non－Magnetic VCXO Series Developed Frequencies 38.0 and 40.0 MHz

Pletronics Inc．certifies this device is in accordance with the RoHS 6／6（2011／65／EC）and WEEE（2002／96／EC）directives．

Pletronics Inc．guarantees the device does not contain the following：
Cadmium，Hexavalent Chromium，Lead，Mercury，PBB＇s，PBDE＇s
Weight of the Device： 0.3 grams
Moisture Sensitivity Level： 1 As defined in J－STD－020C
Second Level Interconnect code：e4

Absolute Maximum Ratings：

Parameter	Unit
V_{CC} Supply Voltage	-0.5 V to +5.5 V
Vi Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Vo Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Thermal Characteristics

The maximum die or junction temperature is $155^{\circ} \mathrm{C}$
The thermal resistance junction to board is 60 to $100^{\circ} \mathrm{C} /$ Watt depending on the solder pads，ground plane and construction of the PCB．

Reliability：Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL－STD－883 Method 2002，Condition B
Vibration	MIL－STD－883 Method 2007，Condition A
Solderability	MIL－STD－883 Method 2003
Thermal Shock	MIL－STD－883 Method 1011，Condition A

VHA6001－Series VCXO CMOS Oscillator

Part Marking：

PLE VHA6001
ff．fM
－YMDXX

Legend：

$$
\begin{array}{ll}
\text { PLE } & =\text { Pletronics } \\
\mathrm{ff.f} & =\text { Frequency } \\
Y M D & =\text { Date of Manufacture (year, } \\
& \text { month and day) } \\
X X \quad & \text { internal factory codes }
\end{array}
$$

Codes for Date Code YMD

| Code | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 2007 | 2008 | 2009 | | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | | |
| Code | A | \mathbf{B} | \mathbf{C} | D | \mathbf{E} | \mathbf{F} | \mathbf{G} | \mathbf{H} | \mathbf{J} | \mathbf{K} | \mathbf{L} | \mathbf{M} |
| Month | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |

Code	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\mathbf{A}	\mathbf{B}	\mathbf{C}
Day	1	2	3	4	5	6	7	8	$\mathbf{9}$	10	$\mathbf{1 1}$	$\mathbf{1 2}$
Code	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{P}	\mathbf{R}
Day	13	14	15	16	17	18	19	20	21	22	23	24
Code	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}					
Day	25	26	27	28	29	30	31					

ESD Rating

Model	Minimum Voltage	Conditions
Human Body Model	1500	MIL－STD－883 Method 3115
Charged Device Model	1000	JESD 22－C101

Package Labeling

Label is $1^{\prime \prime} \times 2.6^{\prime \prime}(25.4 \mathrm{~mm} \times 66.7 \mathrm{~mm})$
Font is Courier New
Bar code is 39－Full ASCII

Label is $1^{\prime \prime} \times 2.6$＂（ $25.4 \mathrm{~mm} \times 66.7 \mathrm{~mm}$ ）
Font is Arial

RoHS Compliant

2nd LvL Interconnect
Category＝e4
Max Safe Temp＝260C for 10s 2X Max

VHA6001－Series VCXO CMOS Oscillator

Jan 2015

Electrical Specification for $3.30 \mathrm{~V} \mathbf{\pm} \mathbf{1 0 \%}$ over the specified temperature range

Item	Min	Typ	Max	Unit	Condition
Frequency Range		－	40	MHz	Contact Factory for non developed frequencies
Pullability APR	± 50	－	－	ppm	
Output Waveform	CMOS				
Output High Level	90	－	－	\％	of V_{CC} for $\mathrm{I}_{\mathrm{OH}}=+7 \mathrm{~mA}$
	70	－	－	\％	of V_{CC} for $\mathrm{I}_{\mathrm{OH}}=+14 \mathrm{~mA}$
Output Low Level	－	－	10	\％	of V_{CC} for $\mathrm{I}_{\mathrm{OL}}=-7 \mathrm{~mA}$
	－	－	30	\％	of V_{CC} for $\mathrm{I}_{\mathrm{LL}}=-14 \mathrm{~mA}$
Output $\mathrm{T}_{\text {RISE }}$ and $\mathrm{T}_{\text {FALL }}$	－	4.0	6.0	nS	10% to 90% of $\mathrm{V}_{\mathrm{CC}}, \mathrm{C}_{\text {LOAD }}=15 \mathrm{pF}$
Output Symmetry	45	50	55	\％	at 50% point of V_{cc}（See load circuit）
Vcontrol Resistance Pin 1	20	25	－	Kohm	
Modulation Bandwidth	10	20	－	KHz	Vcontrol $=1.65 \mathrm{~V} \pm 1.65 \mathrm{~V},-3 \mathrm{~dB}$
E／D Internal Pull－up	50	－	－	Kohm	to V_{cc}
V disable	－	－	15	\％	of V_{CC} applied to pin 1
\checkmark enable	85	－	－	\％	of V_{CC} applied to pin 1
$\begin{array}{ll} \text { Output leakage } & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{array}$	－10	－	＋10	uA	Pin 1 low，device disabled
	－10	－	＋10	uA	
Enable time	－	－	250	nS	Time for output to reach a logic state
Disable time	－	－	250	nS	Time for output to reach a high Z state
Start up time	－	1.5	10	mS	Time for output to reach specified frequency
Supply Current	－	5.0	8.0	mA	$\mathrm{C}_{\text {LOAD }}=15 \mathrm{pF}$
Operating Temperature	－45		＋85	${ }^{\circ} \mathrm{C}$	Defined by part number
Storage Temperature Range	－55		＋125	${ }^{\circ} \mathrm{C}$	

Specifications with Pad 2 E／D open circuit
${ }^{1}$ For all supply voltages，load changes，aging for 1 year，shock，vibration and temperatures．

Test Waveform

Load Circuit

VHA6001－Series VCXO CMOS Oscillator

Mechanical：

Contacts：
Gold 11.8μ inches $\quad 0.3 \mu \mathrm{~m}$ minimum over Nickel 50 to 350μ inches 1.27 to $8.89 \mu \mathrm{~m}$
${ }^{1}$ Typical dimensions
Not to Scale

	Inches	mm
A	0.276 ± 0.006	7.00 ± 0.15
B	0.197 ± 0.006	5.00 ± 0.15
C	$0.087 \max$	2.20 max
D^{1}	0.260	6.60
E^{1}	0.181	4.60
$\mathrm{~F}^{1}$	0.053	1.35
G^{1}	0.011	1.27
H^{1}	0.055	1.40
I^{1}	0.024	0.60
J^{1}	$0.004 R$	$0.10 R$
$\mathrm{~K}^{1}$	$0.008 R$	$0.20 R$
$\mathrm{~L}^{1}$	0.038	0.96
M^{1}	0.200	2.54
$\mathrm{~N}^{1}$	0.004	0.10

Pad	Function	Note
1	Vcontrol Input	
2	Output Enable／Disable	When this pad is not connected，the oscillator shall operate When this pad is logic low，the output will be inhibited（high impedance state） Recommend connecting this pad to V_{cc} if the oscillator is to be always on
3	Ground（GND）	
4	Output	
5	N．C．	No Internal connection，pad may be connected to ground or V_{cc}
6	Supply Voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$	Recommend connecting appropriate power supply bypass capacitors as close as possible．

Layout and application information

For Optimum Jitter Performance，Pletronics recommends：
－a ground plane under the device
－no large transient signals（both current and voltage）should be routed under the device

VHA6001－Series VCXO CMOS Oscillator

Jan 2015

Reflow Cycle（typical for lead free processing）

The part may be reflowed 2 times without degradation．

Tape and Reel：available for quantities of $\mathbf{2 5 0}$ to $\mathbf{1 0 0 0}$ per reel

Constant Dimensions Table 1								
Tape Size	D0	D1 Min	E1	P0	P2	$\begin{aligned} & \text { S1 } \\ & \text { Min } \end{aligned}$	$\begin{gathered} \mathrm{T} \\ \mathrm{Max} \end{gathered}$	$\begin{gathered} \text { T1 } \\ \text { Max } \end{gathered}$
8 mm	$\begin{gathered} 1.5 \\ +0.1 \\ -0.0 \end{gathered}$	1.0	$\begin{aligned} & 1.75 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} 4.0 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} 2.0 \\ \pm 0.05 \end{gathered}$	0.6	0.6	0.1
12 mm		1.5						
16 mm		1.5			2.0			
24 mm		1.5						

Variable Dimensions Table 2								
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao，Bo \＆ Ko	
16 mm	12.1	14.25	7.5 ± 0.1	8.0 ± 0.1	8.0	16.3	Note 1	

Note 1：Embossed cavity to conform to EIA－481－B \quad Dimensions in $\mathrm{mm} \quad$ Not to scale

		REEL DIMENSIONS			
A	inches	7.0	10.0	13.0	
	mm	177.8	254.0	330.2	
B	inches	2.50	4.00	3.75	
	mm	63.5	101.6	95.3	Tape Width
C	mm	$13.0+0.5 /-0.2$			
D	mm	16.4 +2.0 -0.0	16.4 ＋2．0 －0．0	16.4 $+2.0$ －0．0	16.0

Reel dimensions may vary from the above

